Session: 2020-2021

Lesson Plan

Name of the Faculty	$:$	Ms. Nidhi
Discipline	$:$	ME
Semester	$:$	$3^{\text {rd }}$

Subject : MATHEMATICS - III (BSC-MATH- 203G)
Lesson Plan Duration : (from Aug., 2020 to Nov., 2020)
** Work Load (Lecture) per week (in hours): Lectures-03

Week	Theory	
	Lecture Day	Topic (including assignment/test)
	$1^{\text {st }}$	Multivariable Differential Calculus: Limit,
	$2^{\text {nd }}$	Continuity
	$3^{\text {rd }}$	Partial derivatives
$2^{\text {nd }}$$(08 / 08 / 20)To(15 / 08 / 20)$	$1^{\text {st }}$	Homogeneous functions, Euler's Theorem
	$2^{\text {nd }}$	Total derivative,
	$3^{\text {rd }}$	Maxima, Minima and Saddle points,
$\begin{gathered} 3^{\text {rd }} \\ (15 / 08 / 20) \\ \text { To } \\ (22 / 08 / 20) \end{gathered}$	$1^{\text {st }}$	Lagrange's method of undetermined multipliers
	$2^{\text {nd }}$	Multivariable Integral Calculus: Double integral
	$3^{\text {rd }}$	Change of order of integration
$\begin{gathered} 4^{\text {th }} \\ (22 / 08 / 20) \\ \text { To } \\ (29 / 08 / 20) \end{gathered}$	$1^{\text {st }}$	Change of variables
	$2^{\text {nd }}$	Applications of double integral to find area enclosed by plane curves, Triple integral
	$3^{\text {rd }}$	REVISION

MERI College of Engineering and Technology (MERI-CET)

Session: 2020-2021

$\begin{gathered} 5^{\text {th }} \\ (29 / 08 / 20) \\ \text { To } \\ (05 / 09 / 20) \end{gathered}$	$1^{\text {st }}$	Ordinary Differential Equations of first order: Linear and Bernoulli's equations
	$2^{\text {nd }}$	Exact differential equations,
	$3^{\text {rd }}$	Equations reducible to exact differential equations
$\begin{gathered} 6^{\mathrm{th}} \\ (05 / 09 / 20) \\ \text { To } \\ (12 / 09 / 20) \end{gathered}$	$1{ }^{\text {st }}$	Applications of differential equations of first order and first degree to simple electric circuits
	$2^{\text {nd }}$	Newton's law of cooling
	$3^{\text {rd }}$	Heat flow and Orthogonal trajectories
$\begin{gathered} 7^{\text {th }} \\ (12 / 09 / 20) \\ \text { To } \\ (19 / 09 / 20) \end{gathered}$	$1^{\text {st }}$	Ordinary Differential equations of second and higher order
	$2^{\text {nd }}$	Linear differential equations of second and higher order, Complete solution
	$3^{\text {rd }}$	Complete solution
$8^{\text {th }}$$(19 / 09 / 20)To(26 / 09 / 20)$	$1^{\text {st }}$	Complete solution, Complementary function and Particular integral
	$2^{\text {nd }}$	Method of variation of parameters to find particular integral,
	$3^{\text {rd }}$	Cauchy's and Legendre's linear

